
- шина ввода и вывода данных;
- внутренние регистры;
- шина адреса памяти.
Быстродействие — это одна из характеристик процессора, которую зачастую толкуют по-разному. Быстродействие компьютера во многом зависит от тактовой частоты, обычно измеряемой в мегагерцах (МГц). Она определяется параметрами кварцевого резонатора, представляющего собой кристалл кварца, заключенный в небольшой оловянный контейнер. Под воздействием электрического напряжения в кристалле кварца возникают колебания электрического тока с частотой, определяемой формой и размером кристалла. Частота этого переменного тока и называется тактовой частотой. Микросхемы обычного компьютера работают на частоте нескольких миллионов герц. (Герц — одно колебание в секунду.) Быстродействие измеряется в мегагерцах, т.е. в миллионах циклов в секунду.
Наименьшей единицей измерения времени (квантом) для процессора как логического устройства является период тактовой частоты, или просто такт. На каждую операцию затрачивается минимум один такт. Например, обмен данными с памятью процессор Pentium II выполняет за три такта плюс несколько циклов ожидания. (Цикл ожидания — это такт, в котором ничего не происходит; он необходим только для того, чтобы процессор не «убегал» вперед от менее быстродействующих узлов компьютера.)
Почти все современные процессоры работают на тактовой частоте, которая равна произведению некоторого множителя на тактовую частоту системной платы. Например, процессор Celeron 600 работает на тактовой частоте, в девять раз превышающей тактовую частоту системной платы (66 МГц), а Pentium III 1000 — на тактовой частоте, в семь с половиной раз превышающей тактовую частоту системной платы (133 МГц). Обычно тактовую частоту системной платы и множитель можно установить с помощью перемычек или других процедур конфигурирования системной платы (например, с помощью выбора соответствующих значений в программе установки параметров BIOS). Сегодня выпускается множество версий процессоров, работающих на различных частотах, в зависимости от тактовой частоты конкретной системной платы. Например, быстродействие большинства процессоров Pentium в несколько раз превышает быстродействие системной платы. При прочих равных условиях (типах процессоров, количестве циклов ожидания при обращении к памяти и разрядности шин данных) два компьютера можно сравнивать по их тактовым частотам. Однако делать это надо осторожно: быстродействие компьютера зависит и от других факторов (в частности, от тех, на которые влияют конструктивные особенности памяти). Например, компьютер с более низкой тактовой частотой может работать быстрее, чем вы ожидаете, а быстродействие системы с более высоким значением номинальной тактовой частоты будет ниже, чем следовало бы. Определяющим фактором при этом является архитектура, конструкция и элементная база оперативной памяти системы. В некоторых системах можно установить большую рабочую частоту процессора; это называется разгоном (overclocking). После установки больших значений частоты процессора увеличивается и его быстродействие. Практически все типы процессоров имеют так называемый «технологический запас» безопасного увеличения тактовой частоты. Например, процессор 800 МГц может работать на частоте 900 МГц и выше. Следует отметить, что при разгоне процессора снижается устойчивость его работы. Если у вас недостаточно опыта работы с компьютером, не пытайтесь разогнать собственную систему — существенного увеличения производительности вы все равно не получите. Если же вы решились на разгон, то запомните следующее. Большинство современных процессоров Intel (начиная с Pentium II) имеют фиксированный коэффициент умножения частоты, т.е. любое изменение переключателя этого параметра на системной плате не окажет никакого воздействия на процессор. Это делается, чтобы предотвратить перемаркировку процессоров мошенниками. А что же делать компьютерным энтузиастам? Остается лишь один способ разгона — изменение частоты системной шины. Однако и здесь есть одна особенность. Многие системные платы Intel поддерживают стандартные значения частоты системной шины: 66, 100 и 133 МГц. Кроме того, при поме щении процессора в разъем системной платы все необходимые параметры частот устанавливаются автоматически, поэтому изменить что-либо невозможно. Даже если изменить положение переключателя с 66 на 100 или 133 МГц, процессор не будет работать устойчиво. Например, Pentium III 800E работает с коэффициентом 8х при частоте шины 100 МГц. При установке частоты шины 133 МГц, процессор должен работать на частоте 8×133=1 066 МГц. Однако устойчивость работы этого процессора на такой частоте вызывает сомнения. Аналогично, Celeron 600E работает по схеме 9×66 МГц, изменение частоты шины до 100 МГц приведет к тому, что этот процессор будет вынужден работать на частоте 900 МГц, а это очень опасно для него. Многие системные платы рассчитаны на большой диапазон частот системной шины. Например, плата Asus P3V4X поддерживает следующие частоты системной шины: 66, 75, 83, 90, 95, 100, 103, 105, 110, 112, 115, 120, 124, 133, 140 и 150 МГц. Установив в эту плату процессор Pentium III 800E, можно плавно увеличивать частоту системной шины. Обычно допускается 10-20%-ное увеличение частоты системной шины без последствий для процессора, т.е. такое увеличение не сказывается на стабильности работы системы. Существует еще один способ разгона, при котором увеличиваются параметры напряжения питания процессора. Все разъемы Slot 1, Slot A, Socket 8, Socket 370 и Socket A автоматически определяют тип установленного процессора и самостоятельно устанавливают необходимое напряжение питания. В большинстве системных плат (особенно это касается продукции компании Intel) изменить эти значения вручную невозможно. Но другие производители допускают ручное изменение напряжения.
Например, уже упоминавшаяся плата Asus P3V4X позволяет устанавливать напряжение питания с точностью до десятых вольта. Изменяя этот параметр, необходимо помнить о том, что увеличение напряжения в лучшем случае может нарушить стабильную работу системы, а в худшем — вывести процессор из строя. Если вы все-таки решились на разгон, сначала поэкспериментируйте со значениями частот системной шины и лишь потом пробуйте изменять напряжение питания. Также помните, что для разгона необходимы комплектующие (системная плата, память и особенно корпус и вентиляторы системы охлаждения) известных производителей. Не забудьте также установить дополнительные теплоотводы на процессор и дополнительные вентиляторы (если позволяет конструкция) внутри корпуса системы.
Одной из самых общих характеристик процессора является разрядность его шины данных и шины адреса. Шина — это набор соединений, по которым передаются различные сигналы.
В обычном компьютере есть несколько внутренних и внешних шин, а в каждом процессоре — две основные шины для передачи данных и адресов памяти: шина данных и шина адреса. Когда говорят о шине процессора, чаще всего имеют в виду шину данных, представленную как набор соединений (или выводов) для передачи или приема данных. Чем больше сигналов одновременно поступает на шину, тем больше данных передается по ней за определен ный интервал времени и тем быстрее она работает.
Данные в компьютере передаются в виде цифр через одинаковые промежутки времени. Для передачи единичного бита данных в определенный временной интервал посылается сигнал напряжения высокого уровня (около 5 В), а для передачи нулевого бита данных — сигнал напряжения низкого уровня (около 0 В). Чем больше линий, тем больше битов можно передать за одно и то же время. В процессорах 286 и 386SX для передачи и приема двоичных данных используется 16 соединений, поэтому у них шина данных считается 16-разрядной. У 32-разрядного процессора, например 486 или 386DX, таких соединений вдвое больше, поэтому за единицу времени он передает вдвое больше данных, чем 16-разрядный. Современные процессоры типа Pentium имеют 64-разрядные внешние шины данных. Это означает, что процессоры Pentium, включая оригинальный Pentium, Pentium Pro и Pentium II, могут передавать в системную память (или получать из нее) одновременно 64 бита данных.
Разрядность шины данных процессораопределяет также разрядность банка памяти. Это означает, что 32-разрядный процессор, например класса 486, считывает из памяти или записывает в память 32 бита одновременно. Процессоры класса Pentium, включая Pentium III и Celeron, считывают из памяти или записывают в память 64 бита одновременно. Поскольку стандартные 72-контактные модули памяти SIMM имеют разрядность, равную всего лишь 32, в большинстве систем класса 486 устанавливают по одному модулю, а в большинстве систем класса Pentium — по два модуля одновременно. Разрядность модулей памяти DIMM равна 64, поэтому в системах класса Pentium устанавливают по одному модулю, что облегчает процесс конфигурирования системы, так как эти модули можно устанавливать или удалять по одному. Каждый модуль DIMM имеет такую же производительность, как и целый банк памяти в системах Pentium. Количество битов данных, которые может обработать процессор за один прием, характеризуется разрядностью внутренних регистров. Регистр — это, по существу, ячейка памяти внутри процессора; например, процессор может складывать числа, записанные в двух различных регистрах, а результат сохранять в третьем регистре. Разрядность регистра определяет количество разрядов обрабатываемых процессором данных. Разрядность регистра также определяет характеристики программного обеспечения и команд, выполняемых чипом. Например, процессоры с 32-разрядными внутренними регистрами могут выполнять 32-разрядные команды, которые обрабатывают данные 32-разрядными порциями, а процессоры с 16-разрядными регистрами этого делать не могут. Во всех современных процессорах внутренние регистры являются 32-разрядными.
Шина адреса представляет собой набор проводников; по ним передается адрес ячейки памяти, в которую или из которой пересылаются данные. Как и в шине данных, по каждому проводнику передается один бит адреса, соответствующий одной цифре в адресе. Увеличение количества проводников (разрядов), используемых для формирования адреса, позволяет увеличить количество адресуемых ячеек. Разрядность шины адреса определяет максимальный объем памяти, адресуемой процессором.
Кэш — это быстродействующая память, предназначенная для временного хранения программного кода и данных. Обращения к встроенной кэш-памяти происходят без состояний ожидания, поскольку ее быстродействие соответствует возможностям процессора, т.е. кэш-память первого уровня (или встроенный кэш) работает на частоте процессора. Благодаря этому обмен данными с относительно медленной системной памятью значительно ускоряется. Процессору не нужно ждать, пока очередная порция программного кода или данных поступит из основной области памяти, а это приводит к ощутимому повышению производительности компьютера.При отсутствии кэш-памяти такие паузы возникали бы довольно часто. В современных процессорах встроенный кэш играет еще более важную роль, потому что он часто является единственным типом памяти во всей системе, который может работать синхронно с процессором. В большинстве современных процессоров используется множитель тактовой частоты, следовательно, они работают на частоте, в несколько раз превышающей тактовую частоту системной платы, к которой они подключены. Если необходимые данные во встроенном кэше отсутствуют, процессор обращается за ними в кэш-память второго уровня или непосредственно к системной шине. Наличие двух типов кэш-памяти приводит к тому, что 90% времени данные извлекаются из кэш-памяти первого уровня (система работает на максимальной частоте) а 10%- из кэш-памяти второго уровня (система работает на частоте системной платы), т.е. для увеличения производительности системы в первую очередь необходимо увеличить объем кэш-памяти второго уровня. В процессорах Pentium (P5) кэш-память второго уровня располагается на системной плате и работает на ее частоте. Существенное повышение производительности процессоров произошло после переноса этой кэш-памяти с системной платы в процессор, т.е. ее рабочая частота сравнялась с частотой процессора. Вначале кэш-память и ядро процессора располагались на одном чипе, что влекло за собой существенное удорожание производства. Начиная с процессоров Pentium II корпорация Intel стала приобретать микросхемы кэш-памяти у сторонних производителей (Sony, Toshiba, NEC, Samsung и т.д.) и монтировать микросхему процессора и микросхемы кэш-памяти на плате, что повлекло изменение корпуса процессоров (а следовательно, и разъемов).